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Introduction

Historical evidence indicates that European grape (Vitis vinif-
era L.) was introduced from Europe to the American continent in 
the 16th century [1]. However, it failed to thrive due to pests and 
diseases, mainly phylloxera (Phylloxera vastatrix) and nematodes. 
The ability of north American Vitis species to resist pests and dis-
eases was soon recognized and they were used first as phylloxera 
resistant hybrids with Vitis vinifera, then as rootstocks for the sen-
sitive European cultivars [2]. In commercial viticultural practice, 
rootstocks have been in use since the middle of the 19th century 
to protect grapevines form soil borne pests but also to ameliorate 
the effect of unfavourable soil and environmental conditions, such 
as lime, salinity, and drought. In addition, rootstocks can affect the 
grapevine growth, fruit yield, and other economically important 
vine attributes.

From the late 1850’s, grafting on various Vitis species or in-
terspecific Vitis hybrids became a common practice in California 
as a consequence of the introduction of phylloxera [3]. Later, this 
practice was spread in virtually all viticultural regions over the 
world. Numerous Vitis species and hybrids were tested for their 
resistance to phylloxera [4,5] of which the most efficient have  

 
been extensively used [6-8]. In addition to phylloxera, nematodes 
represent another pest threatening vineyards [9]. Thus, nematode 
resistant rootstocks were developed from the 1930’s [10-19]. Al-
though the commercially used rootstocks are much fewer com-
pared to grapevine cultivars, the importance of efficient and ac-
curate genotype identification is of equal importance, if not more. 
There is a necessity for the grower to have an absolute certitude 
about the rootstocks on which his selected cultivars are grafted 
due to high cost for establishing a vineyard and to the long time 
required for full production [8].

Traditionally, the identification of Vitis genotypes, both cul-
tivars and rootstocks, was based on ampelographic characters 
and biochemical markers, such as isoenzymic profile, until the 
progress in molecular biology allowed the development of nu-
merous molecular markers for genotype identification. Among 
them are variable number tandem repeat (VNTR), short tandem 
repeat (STR), restriction fragment length polymorphism (RFLP), 
randomly amplified polymorphic DNA (RAPD), amplified frag-
ment length polymorphism (AFLP), inter simple sequence re-
peat (ISSR), sequence characterized amplified region (SCAR), 
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expressed sequence tag (EST), single nucleotide polymorphism 
(SNP), and microsatellites, single sequence repeats (SSR). In early 
1990’s, five RFLP probes designed from Vitis vinifera Chardonnay 
DNA were developed, which enabled to distinguish 16 rootstocks 
[20,21]. Concomitantly, Boursiquot and Para [22] assayed one iso-
enzyme system, previously characterized on grapevine cultivars 
for fingerprinting 30 rootstocks authorized for trade in France and 
were able to distinguish uniquely 5 rootstocks while others clus-
tered in 4 phenotypic groups [23]. Walker and Liu [24] by using 5 
isoenzyme systems were able to obtain a unique isoenzyme pro-
file for each rootstock. Research for easier and more reproducible 
markers went on with the assessment of RAPD markers [25-27].

All the assayed markers, eventhough successful enough for 
providing a single identity profile for a rootstock, were domi-
nant markers, which do not allow to differentiate between ho-
mozygotes and heterozygotes and thus to rebuild pedigrees, and 
consequently to carry out a follow up of selection processes, for 
creating and selecting new rootstocks for the future. Additionally, 
the methods are costly, cumbersome, affected by environmental 
conditions (isoenzymes) [28] or subject to low reproducibility 
between laboratories. These disadvantages were overcome by the 
availability of specific microsatellite markers developed and char-
acterized in a large number of grapevine cultivars [29].

The use of nuclear SSR markers for genotype identification of 
cultivars and hybrids in Vitis vinifera and Vitis species has been 
developing fast and assessed for a variety of us [30,31]. The nucle-
ar data were complemented by the use of chloroplast microsatel-
lite [32,33]. Microsatellite profiling also opened the path for gene 
pools studies [34,35], molecular assisted management of genetic 
resources [36-42]. Furthermore a neural network algorithm and 
a combination of RAPD and SSR molecular markers were used for 
the genetic characterization of different rootstock varieties [31]. 
Riaz et al. [43] developed nuclear and chloroplast SSR fingerprint 
data from rootstocks in germplasm collections, compared them to 

develop a reference dataset, and carried out parentage analysis to 
resolve previously reported, and determine new breeding records. 
They refined and updated the parentage of 26 rootstocks based 
on 21 nuclear and 14 chloroplast markers. Results indicated that 
39% of the genetic background of analyzed rootstocks originated 
from only three accessions of three grape species: Vitis berlandieri 
cv. Rességuier 2, V. rupestris cv. du Lot and V. riparia cv. Gloire de 
Montpellier. Results determined that Rességuier 2 is the maternal 
parent for 14 commercial rootstocks, 9 of which are full-sibs with 
Gloire de Montpellier as the paternal parent. Similarly, du Lot is 
the paternal parent of nine rootstocks.

Here we present, microsatellite profiling data of 43 plants 
representing 28 rootstocks from 3 ampelographic collections in 
Greece, in an effort to support the practical application of micro-
satellite profiling for chasing management mistakes, solving com-
mercial dispute or recovering lost information. In addition, the 
possible pedigrees of this rootstock gene pool were assessed. The 
previously reported pedigree information was correct for only 
eight of the 28 rootstocks [43]. Additionally, misnaming of root-
stocks originating from a commercial orchard was solved by ap-
plying microsatellite profiling to plants sampled in the vineyard.

Materials and Methods

Plant material

Leaves from 43 Vitis spp. and hybrids used as rootstocks (Ta-
ble 1) were collected from the Laboratory of Plant Physiology and 
Biotechnology at the University of Crete, Heraklion, the Institute 
of Floriculture, Horticulture and Viticulture, National Agricultural 
Research Foundation (NAGREF), Katsabas, Heraklion and the In-
stitute of Vine and Wine, Lykovrisi (NAGREF), Athens. Leaves were 
kept frozen at -80°C until used. Additionally, leaves from 12 plants 
in a private nursery and one from a private vineyard were sampled 
and stored in the same way.

Table 1: The names of the 43 Vitis rootstocks, the origin, the acronyms of the individuals and the acronym of the populations used for the molecular 
profiling of the 20 populations of Vitis rootstocks.

Rootstocks names Origin Acronyms Populations 

Aramon Rupestris Ganzin 1 4 AXR1_4 ARA 

Couderc 157-11 3 Coud157-11_3 COUD 

Couderc 1613 4 Coud1613_4 COUD 

Couderc 161-49 1 Coud161- 49_1 COUD 

Couderc 161-49 3 Coud161-49_3 COUD 

Couderc 161-49 3 C161-49_3 COUD 

Couderc 1616 3 Coud1616_3 COUD 

Couderc 3306 3 Coud3306_3 COUD 

Couderc 3309 3 Coud3309_3 COUD 

Dog Ridge 4 Dogridge_4 DORI 

Ecole de Montpellier 34 3 Mont34_3 ECMONT 

Fercal 3 Fercal_3 FER 

Fercal 3 Fercal_3 FER 
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Gloire de Montpellier 3 Gloire_3 GLOMONT 

Harmony 3 Harmony_3 HAR 

Kobber 5BB 4 Tel5BB_4 KOBSELOPP 

Kobber 5BB 3 Tel5BB_3 KOBTEL 

LN33 4 LN33_4 LN 

LN33 3 LN33_3 LN 

Millardet et Grasset 101-14 3 101-14_3 MILGRA 

Millardet et Grasset 41B 4 41B_4 MILGRA 

Millardet et Grasset 41B 3 41B_3 MILGRA 

Millardet et Grasset 420A 4 420A_4 MILGRA 

Paulsen 1045 3 Pau1045_3 PAUL 

Paulsen 1103 4 Pau1103_4 PAUL 

Paulsen 1103 3 Pau1103_3 PAUL 

Paulsen 1103 3 Pau1103_3 PAUL 

Paulsen 1103 1 Pau1103_1 PAUL 

Richter 110 3 Ri110_3 RICH 

Richter 110 4 Ri110_4 RICH 

Richter 31 3 Ri31_3 RICH 

Richter 57 3 Ri57_3 RICH 

Ruggeri 140 3 Rug140_3 RUG 

Ruggeri 140 4 Rug140_4 RUG 

Ruggeri 140 1 Rug140_1 RUG 

Rupestris du Lot 4 Rup Lot_4 RUPE 

Rupestris du Lot 3 Rup Lot_3 RUPE 

Salt Creek 4 Salt Creek_4 SALTCREE 

Salt Creek 3 Salt Creek_3 SALTCREE 

Selektion Oppenheim 4 4 SO4_4 SEL 

Selektion Oppenheim 4 3 SO4_3 SELOPPRUG 

Teleki 5C 3 Tel5C_3 TEL 

Teleki 8B 3 Tel5BB_3 TELKOBB

DNA extraction

DNA was extracted from 100 to 150 mg FW of leaf tissue ac-
cording to a micro-method of DNA purification described else-
where [37].

Microsatellite PCR and microsatellite profile analysis 

Amplification primer sequences for 7 nuclear microsatellite 
loci from Vitis vinifera, UCH2, UCH11, UCH12, UCH19, UCH29, 
UCH35 and UCH40, were used for DNA amplification. PCR ampli-
fications were carried out as described previously [38]. PCR prod-
ucts sizing and SSR profiles analysis were performed as described 
elsewhere [37,42]. 

Genetic Analysis and Neighbor-Joining Tree Construction

The allele sizing per locus was based on published repeat pat-
terns. The data matrixes were produced and the genetic diversi-
ty measures were determined for each employed locus across all 
fingerprinted genotypes. These methods included the individual 
locus polymorphic information content (PIC), the observed het-

erozygosity (HO), and the expected heterozygosity (HE). PIC, HO, 
HE, estimated frequency of null alleles and probability of identity 
(PI) were calculated with the software CERVUS ver. 3.0.3 [44,45]. 
A matrix was produced employing 

Nei’s distance matrix within GenAlEx, version 6 [46]. Further-
more, a neighbor-joining tree was produced using MEGA 7 start-
ing with the Nei’s distance matrix [47,48]. Twenty (20) popula-
tions were formed from 43 Vitis rootstocks. In order to determine 
the divergence between the different population, pairwise Fst 
measurements were calculated according to Weir and Cockerham 
[49] using GenAlEx 6 [46]. Analysis of molecular variance (AMO-
VA) was also performed to assess the genetic structure of the 20 
population, using GenAlEx 6.

Population Structure

The STRUCTURE 2.3.4 software was used to analyse the ger-
mplasm genetic structure. This software utilize a Bayesian clus-
tering algorithm to identify subpopulations, assign individuals to 
them, and estimate population allele frequencies [50]. The analy-
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sis was carried out using a burning period of 10,000 iterations and 
a run length of 200,000 MCMC replications. We tested a continu-
ous series of K, from 1 to 10, in 10 independent runs. We did not 
introduce any prior knowledge about the origin of the population, 
and assumed correlated allele frequencies and admixture [51]. For 
selecting the optimal value of K, ΔK values were calculated using 
STRUCTURE harvester [52,53]. POPHELPER, proposed by Francis 
(2016), was used to analyse and visualize population structure. 
Furthermore, a “hierarchical STRUCTURE analysis” was applied 
in this study by running STRUCTURE on subsequently partitioned 
data, as suggested by Pritchard and Falush [54].

Results and Discussion

Genetic diversity analysis of Vitis rootstocks

Genetic diversity is caused by multitude factors. Many evo-
lutionary forces can change genetic frequencies of crop species, 
which in turn determine the genetic diversity of a population. Gene 
flow, genetic drift, and mutations are among the evolutionary forc-
es, which affect gene pool of a given population [55]. Riaz et al. [43] 
provided valuable historical information on the diachronic efforts 
and the contributors worldwide in the production of the existing 
and extensively used grape rootstocks. In the last three decades, 
biochemical markers (isoenzymes), DNA-based markers, such as 
RAPD, RFLP, AFLP and SSR have been used to fingerprint grape 
rootstocks at different geographical ampelographic collections 
[20,24,26,36,57-60]. In addition, SSR markers were used in Spain 
to confirm identification and elucidate the parentage of selected 
rootstocks [60-62]. Some other attempts assessed the clonal vari-
ation and possible parental relations, focusing primarily on the di-
versity of Teleki lines and comparing them with other rootstocks 

[59,63]. The results revealed that the existing information in the 
database of many historical rootstocks is not always accurate and 
should be corrected De Andris et al. 2007. This work aims to add 
to this effort, using SSR because of their polymorphism, reproduc-
ibility, and codominant nature.

Herein, a total of 43 individuals from 20 Vitis rootstocks were 
genotyped employing 7 SSR loci (Table 1). Polymorphic fragments 
were reproducibly amplified at all 7 SSR loci and microsatellites 
profiles of these 43 plants are given in Table S1. Microsatellite pro-
files of 13 plants from a private nursery and a private vineyard are 
given in Table S2. The genetic diversity measures determined for 
each employed locus across all fingerprinted genotypes are shown 
in Table 2. The number of amplified alleles (k) by each SSR prim-
er pair varied from eleven for UCH19 to twenty-three for UCH12 
with an average number of alleles per locus of 15.857. Different 
amplified alleles are shown in Table S4. Observed heterozygosity 
(Ho) ranged from 0.721 in UCH2 and UCH35 to 0.930 in UCH19, 
with an average value of 0.827, while the expected heterozygosity 
(He) ranged from 0.783 in UCH73 to 0.941 in UCH12 with an av-
erage value of 0.8774. Bianchi et al. [64] found rootstock hetero-
zygosity values of Ho = 0.099 and Ho = 0.734 for SNPs and SSRs, 
respectively, whereas SSR He value of core collection was higher 
than the values detected in other studies [39,58,65,66] confirm-
ing the uniqueness and preciousness of the analyzed germplasm 
collection. In the study by Emanuelli et al. [65] using SSR, the sub-
set of rootstocks revealed the highest number of alleles (405) and 
the highest heterozygosity (0.86), in spite of their relatively small 
sample size.

Table 2: Genetic data at seven nuclear microsatellites  of 43 plants representing 20 rootstocks from 3 different ampelographic collections obtained from 
the Greek Vitis Database [42].

Locus k n Hobs Hexp PIC F(Null)

UCH2 14 43 0,721 0,872 0,850 0,0998

UCH11 17 43 0,814 0,889 0,869 0,0435

UCH12 20 43 0,907 0,941 0,926 0,0129

UCH19 11 43 0,930 0,860 0,833 -0,0469

UCH29 19 43 0,907 0,925 0,908 0,0044

UCH35 14 43 0,721 0,783 0,757 0,0447

UCH40 13 43 0,791 0,871 0,847 0,043

The genotype level of polymorphism was assessed by calcu-
lating polymorphic information content (PIC) values for each of 
the 7 SSR loci. The average PIC was 0.8556 with a minimum value 
of 0.757 in UCH35 and a maximum value of 0.926 in UCH12. One 
of the seven loci, the UCH19 exhibited probability of null alleles, F 
(null), greater than 0.05. Propability Identity (PI) is the probabil-
ity with which two randomly taken genotypes display the same 
SSR profile. The probability of obtaining an identical genotype, the 
cumulative probability of identity, was calculated with a value of 
8.9 × 10e−12, using the 7 SSR markers in combination. This num-

ber corresponds to a statistical potential of distinguishing a large 
number of unrelated grapevine genotypes. AMOVA was conducted 
to determine the variation explained by populations. The results 
indicated that 30% of the genetic variation (p < 0.0001) resided 
among populations and 0% (p < 0.0001) resided among individu-
als. The remaining 70% of the total variation (p < 0.0001) was ex-
plained within individuals. The RST value was 0.342 (p < 0.0001). 
The genetic variation was tested using the FST statistic estimated 
from pairwise comparisons as a measure for genetic distance be-
tween populations and individuals. The results indicated that 24% 
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of the genetic variation (p < 0.0001) resided among populations 
and 76% resided within individuals (p < 0.0001). The FST value 
was 0.287 (p < 0.001).

The phylogeny and genetic relations among grapevine culti-
vars is of great importance in genetic improvement of Vitis ger-
mplasm ([42,65,67]). Emanuelli et al. [65] tested the structure 
analysis of 111 Vitis rootstocks. The genetic structure of cultivated 
grapevine has been influenced by human selection and it can be 
largely understood as a complex pedigree, due to the vast num-
ber of higher order pedigree relationships [68]. Αn unknown rel-
evance among the grape genotypes affect the study of the genetic 
structure, resulting in the overestimation of the probable subpop-
ulation number (K) using standard methods [54,69].

STRUCTURE Analysis 

The genetic structure of the germplasm collection was evalu-
ated using STRUCTURE software. The 20 populations of the root-
stocks were assigned in its ancestor population as shown in Fig-
ure 1. The analysis provided evidence for a significant population 
structure in this set of rootstocks. A maximum value of the rate 
of change in the log probability of the data was revealed at K = 2, 
using Evanno’s method (Figure 1). The highest Delta K value was 
observed at K = 2 (Figure 1b). The estimated logarithm of proba-
bility of the data [L(K)] increased linearly from K = 2 up to K = 10 
showing a clear point of inflection (Figure 1a). The estimated pop-
ulation structure inferred from the analysis identifies two genet-
ic groups, Ancestor population (pop) A and Ancestor population 
(pop) B (Figure 2).

Figure 1: Genetic STRUCTURE of 43 Vitis rootstocks considering K = 2. Colors (purple and yellow) represent the two groups, defined by 
the K value. The assignment of the 20 populations in the ancestry groups. a) second-order rate of change of the loglikelihood of the data 
(ΔK) as a function of K, the number of clusters (color figure online) b) mean (± standard deviation) log-likelihood value of the data [L(K)] as 
a function of the value of K, the number of clusters.
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Figure 2: Flow charts of hierarchical STRUCTURE analysis of 43 Vitis rootstocks with 7 SSR markers. First round of STRUCTURE 
analysis: two predefined groups which are separated by color, ancestor pop A (purple) and ancestor pop B (yellow). Plots generated with 
POPHELPER using all the individuals used in this study. The hierarchical STRUCTURE analysis resulted in subsequent charts, where 
the subpopulations found are also separated by color. Second round of STRUCTURE analysis: Ancestry group A consists of 5 subgroups, 
Ancestry group B consists of 7 subgroups (color figure online).

Hierarchical STRUCTURE Analysis

A subsequent round (second round) of STRUCTURE revealed 
that the two populations A and B (K =2) were further separated as 
follows (Figure 2): Ancestry group A is subdivided into five distinct 
subgroups (K=5) (Figure 3). Twenty-three Vitis rootstocks are 
presented in the ancestry group A (Figure 2). These are Tel5C_3, 
Tel5BB_3, SO4_3, SO4_4, Salt Creek_3, Rup Lot_4, Rup Lot_3, 
Rug140_3, Rug140_4, Rug140_1, RI57_3, RI110_3, Pau1103_1, 
Pau1103_3, Pau1103_4, Pau1045_3, Tel5BB_3, Tel5BB_4, Gloire_3, 

Coud161-49_3, Coud161- 49_1. Interestingly some populations 
appear identical a) Tel5BB_3 (KOBTEL population) and Tel5BB_3 
(TELKOBB population) (subgroup-orange), b) Tel5BB_4 with 
SO4_4 and (subgroup-orange), c) Rug140_1,3,4 with SO4_3 (sub-
group-green). Further research is needed to verify these data. 
Three rootstock populations appear to have individuals in both 
ancestor populations (1st round) these are Richter (subgroup-pur-
ple), Couderc (subgroup-red) and Salt Creek (subgroup-purple). 
The remaining individuals mingle with each other according to 
dendrogram and their distances are higher than 0.2.
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Ancestry group B is subdivided into seven distinct subgroups 
(K =7) (Figure 2). Twenty Vitis rootstocks are presented in ances-
try group B (Figure 2). These are Salt Creek_4 (subgroup-red), 
RI31_3 (subgroup-light blue), RI110_4 (subgroup-yellow), 
420A_4 (subgroup- yellow), 41B_3 (subgroupmagenta), 41B_4 
(subgroup- magenta), 101-14_3 (subgroup-light green), LN33_4 
(subgroup-green), LN33_3 (subgroup-green), Harmony_3 (sub-
group-light green), Fercal_3 (subgroup-light blue), Mont34_3 
(subgroup-yellow), Dogridge_4 (subgroup- yellow), Coud3309_3 
(subgroup- yellow), C1613_4 (subgroup-green), Coud3306_3 
(subgroup-red), Coud157-11_3 (subgroup-yellow), and AXR1_4 

(subgroup-yellow). Again interestingly, we can see that none of 
the populations are close to each other. Their distances are higher 
than 0.2 (Figure 3). According to Emanuelli et al. [65], the hierar-
chical approach needs to be applied to delve deeper into the com-
plex relationships of the Vitis germplasm. Considering the relevant 
role of rootstocks on environmental stress tolerance, their low ge-
netic diversity reduces the ability of grapevine cultivars to adapt 
to several environmental constraints. This issue can be overcome 
by increasing the genetic and phenotypic diversity of the breed-
ing material, including non-conventional material in the further 
breeding programs.

Figure 3: Neighbor-joining unweighted phylogenetic similarity tree based on Nei’s distance matrix. Its color (purple-yellow, 1st round of 
STRUCTURE) assign its rootstock population in an ancestor population.
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Genetic Distance Analysis 

A neighbor-joining tree was built based on Nei’s distance ma-
trix (Figure 3). Based on this phylogenetic tree the 43 Vitis root-
stocks form 20 populations belonging to six major clusters.

i. KOBTEL-TELKOBB mingled with TEL and all of them mingled 
with KOBSELOPP-SEL, all assigned in the same ancestor pop-
ulation A and the same subgroup orange.

ii. GLOMONT is mingled with HAR but their big distance be-
comes obvious with the Structure Analysis. GLOMONT be-
longs to the ancestor population A and HAR to the ancestor 
population B.

iii. ARA, SALTCREE and COUD appear in the same cluster howev-
er many individuals belong to different ancestor populations.

iv. ECMONT, DORI and FER belong to the same ancestor popula-
tion B, with ECMONT and DORI in subgroup-yellow and FER 
in subgroup-light blue.

v. LN and MILGRA form a cluster and belong to the same ances-
tor population A, LN has individuals in subgroup-green and 
MILGRA has some in subgroups magenta and yellow.

vi. RICH, PAUL, RUPE, RUG, SELOPPRUG form another cluster. 

Solving identity ambiguities 

Microsatellite profiles of 13 plants from a private nursery and 
a private vineyard are given in Table S2, along with profiles of ref-
erence rootstocks and cultivars (Paulsen 1103, Ruggeri 140, Cou-
derc 3309 and Soultanina). Phenotypic discrepancies based the 
need for such microsatellite profiling. From the results it appeared 
that the allegated Paulsen 1103 was the cultivar Soultanina, that 
the allegated Ruggeri 140 was an unknown profile not present in 
the Greek Vitis Database and that an unknown plant from a private 
vineyard was in fact the rootstock Couderc 3309. This example 
shows the resolution of microsatellite profiling of rootstocks and 
cultivars to solve possible commercial disputes between nurseries 
and their customers.

Conclusion

The significance of rootstocks to reduce the impact of biotic 
and abiotic stresses on V. vinifera cultivars requires the increase 
of the genetic and phenotypic diversity of the breeding rootstock 
material. Most of the currently used rootstocks globally were bred 
nearly a century ago; however, the changing climate has prompt-
ed a renewed interest in breeding rootstocks to address current 
and future vineyard issues [43]. If the lineage of classic grape 
rootstocks is uncovered, and their inheritance is established and 
understood, this information can be used to broaden the genetic 
basis of new rootstocks. Therefore, the existing germplasm col-
lections are valuable resources for exploring the genetic and phe-
notypic diversity and providing new genetic resources to support 
plant breeding efforts.
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